
www.transcenda.com

Selecting the Right

Technology Stack for

Mobile App
Development

www.transcenda.com

2 | www.transcenda.com

"

Overview

M obile applications have steadily become

the main channels through which people

interact with organizations, access information

and perform numerous other tasks, ranging from

reading product reviews to viewing real estate

listings. In 2017, mobile website traffic surpassed

desktop, and it has hovered around 50% ever

since, as the high convenience and low barriers to

entry of using mobile devices — plus the vast iOS

and Android app ecosystems — have made them

the primary platforms for millions.

But connecting with and sustaining the interest

of mobile users can be challenging, in large part

because they have exceptional expectations for

how the apps they use look, feel and perform. A

Think With Google study found even a 1-second

delay in mobile loading times reduced conversions

by 20%, while negative mobile experiences

decreased future purchase intent by 62%.

Delivering the experience mobile users expect

is a balancing act, involving considerations

of the relative performance characteristics of

different technology stacks and approaches to

development, along with their associated learning

curves and costs. For example, an app harnessing

the power of a device’s biometrics sensors and

voice assistant may be more useful than an

equivalent web app, but costlier to build.

Fortunately, there are multiple viable options

available, covering a wide range of budgets,

development team capabilities and business

requirements. Transcenda can help you

determine if native, native cross-platform,

hybrid, progressive web app (PWA) or

responsive mobile website development is the

best fit for your circumstances. Let’s explore

each of these routes in more detail.

In 2017, mobile website

traffic surpassed

desktop, and it has

hovered around 50%

ever since."

www.transcenda.com

3 | www.transcenda.com

Option No. 1:
Native Applications

N ative development entails building a bespoke

application for each platform, using the official

software development kits (SDKs) and tools for the

OS in question. For iOS, this process often involves

using Swift or the older Objective-C language within

an integrated development environment (IDE) like

XCode. On Android, Kotlin is Google’s preferred

language — though Java remains popular — and

Android Studio is the official IDE.

Because native mobile applications use technology

stacks built specifically for the platforms they run

on, they deliver the fastest performance and tightest

integration with platform APIs. A native app can fully

utilize underlying hardware features such as voice-

activated assistants, gyroscopes and biometrics,

which may be off-limits to web applications.

Moreover, native apps are more energy-efficient and

can have smaller filesizes and memory footprints

than cross-platform native apps. Plus, they always use

native user interface (UI) controls.

These characteristics can make native apps

ideal for consistently meeting mobile user

expectations. After all, many app uninstalls stem

from specific frustrations with apps that are too

big, slow, and/or memory-hungry — shortcomings

that native apps are better-positioned to avoid

than non-native alternatives. However, native app

development is relatively time-consuming and

expensive. A dedicated repository must be also

maintained for each OS, as code cannot be reused

across platforms.

Ideal Use Cases for
Native Development:

 Complex and demanding applications that

cannot compromise on performance and are

designed to maximize the functionality of a

particular platform.

www.transcenda.com

4 | www.transcenda.com

Pros

• Native apps offer the highest level of

performance, minimizing the loading times and

technical complications that might otherwise

drive users to uninstall.

• There are opportunities for optimization in areas

such as power consumption, memory utilization

and filesize not available to other types of apps.

• Native UI controls are always available, for a

seamless user experience closely aligned with

that of the platform itself.

• All underlying hardware and APIs are accessible,

for tightly integrating functionalities like

voice controls and reading the states of other

applications.

Cons

• Development time can be very protracted, due

to the need to build and optimize separately for

each platform and the inability to reuse code.

• Cost of development is also high, not only

because of the added time but also as a result of

more complex ongoing maintenance.

• Distribution is limited to official app stores, with

no downloads or updates via web).

www.transcenda.com

5 | www.transcenda.com

Option No. 2:
Cross-Platform
Native Applications

C ross-platform native applications are rendered

with native code on iOS and Android, but

built with different programming languages and

tools than those used in traditional mobile native

app development. Instead of a Swift or Kotlin stack,

developers can use one centered on JavaScript, Dart,

or another general-purpose language to build a

codebase that can be readily reused across multiple

platforms, while still being able to access the native

APIs on each one.

This approach has rapidly become one of the most

popular methodologies for mobile application

development. It saves significant time and money

compared to building separately for iOS and Android

(development time can be halved compared

to native development), offers close-to-native

performance and delivers a richer experience than

responsive web applications or PWA.

Cross-platform native apps are distributed via app

stores and look more or less like traditional native

apps to end-users, with some UI variations possible.

Like native apps, they face the possible drawback of

delays during app review.

Currently, two cross-platform native

frameworks dominate the landscape: React

Native, which is supported by Facebook, and

the more recently released Flutter, a Google-

led project.

As of 2020, 42% of mobile developers used

React Native and 39% used Flutter — each

more than 20 percentage points ahead of any

other solution. Both have risen in popularity as

alternative frameworks have declined.

42% React Native

39% Flutter

18% Other

www.transcenda.com

6 | www.transcenda.com

React Native

Reactive Native provides a JavaScript library for

building applications that render as native code.

As its name suggests, it uses the actual native

UI controls on both iOS and Android, rather than

imitations of it or standard web views.

A React Native application features an on-

device main (native) UI thread, built with the

iOS or Android SDK, and a JavaScript thread

running in a separate virtual machine. The two

are connected via an asynchronous, serialized

and batched bridge, which sends the views and

business logic from the JavaScript side to the

native side for execution at runtime.

Essentially, React Native apps are built with

components that wrap native code and then

interact with native APIs using JavaScript

and the declarative React UI paradigm. These

components, such as “View” and “Text,” are

platform-agnostic and get “mapped” later on to

each mobile platform’s native UI. Accordingly,

developers can work quickly and productively,

while targeting both iOS and Android thanks to

the shared JavaScript code.

www.transcenda.com

7 | www.transcenda.com

Pros

• JavaScript is one of the most used

programming languages, with an extensive

package ecosystem. Plus, the large React

Native community is always adding new

functionality.

• React Native apps have reasonable

performance along with true native UI controls

from official SDKs, for a native-like experience

for end users.

• CodePush support is available for the

JavaScript side, so that “live” app updates can

be sent directly to a user’s device.

• Overall, React Native enables cost-effective and

streamlined cross-platform development, with

a convenient mapping system for components

and shared code for mobile and web.

Cons

• You may still need to perform native

development to build custom React Native

components from scratch, negating the

advantages of a cross-platform approach.

• The dual runtime environments (native and

JavaScript) make debugging more difficult

and can also lessen performance compared

to native or Flutter apps.

• There is a significant learning curve, not

only for learning React Native but for

navigating some of the particular technical

issues React Native apps often encounter.

www.transcenda.com

8 | www.transcenda.com

Flutter

Flutter is a complete open source UI toolkit

for building cross-platform, natively compiled

applications with one codebase. Flutter apps are

built with Dart, Google’s own client-optimized

language. The Flutter framework includes layered

libraries for animations, painting, gestures,

rendering and widgets, along with Material

(Android) and Cupertino (iOS) controls for

implementing the appropriate design language

on each platform. Note that these design libraries

are not actually native Android or iOS UI, though,

despite the similarities.

Unlike React Native, Flutter does not need a bridge,

nor does it rely on just-in-time (JIT) compilation on

mobile devices. It instead uses ahead-of-time (AOT)

compilation of Dart code into native ARM code,

boosting performance compared to JIT execution.

The Flutter framework sits atop the Flutter engine,

which is written primarily in C++ and contains

the Dart runtime and Skia graphics library, and a

platform-specific embedder.

During development, Flutter allows for relatively

fast, productive work, due to its Stateful Hot Reload

feature for seeing changes without discarding the

current app state. The same codebase can be used

for both iOS and Android. Plus, Flutter supports web

and desktop development, too.

Pros

• Flutter apps perform as close as possible to

native apps, through AOT compilation of

their Dart code.

• Flutter’s layered architecture allows for

extensive customization of virtually every

pixel in an application.

• Development and debugging in general are

straightforward compared to other cross-

platform frameworks.

• Code can be easily shared across multiple

mobile and desktop web platforms.

Cons

• Dart is not nearly as familiar or commonly

used as JavaScript, CodePush isn’t

supported and the overall community and

ecosystem are not yet as large as React

Native’s.

• The Material and Cupertino libraries do not

implement true native UI controls.

www.transcenda.com

9 | www.transcenda.com

Other Frameworks

Aside from React Native and Flutter, there are

comparable frameworks including Xamarin (a

Microsoft subsidiary), NativeScript and Appcelerator

Titanium. These solutions may offer unique benefits

such as the ability to use C# and .NET, or TypeScript,

which transpiles to JavaScript.

But these frameworks have steadily lost ground, in

terms of developer interest, to the big two over time.

The specific reasons for their decline may include

their overly complex tools, limited community

support and worse performance than competitors.

Ideal Use Cases
For Cross-Platform
Native Applications:

Cross-platform applications that need

close-to-native performance, but without

the cost, timeframes and complexity of

native development.

www.transcenda.com

10 |www.transcenda.com

Option No. 3:
Hybrid Applications

H ybrid applications combine native and web

technologies, albeit in a very different way than

JavaScript-based solutions such as React Native, and

with much less performwance optimization. Typically,

this approach involves encapsulating a mobile

website or application core written in HTML, CSS and

JavaScript inside of a native shell. This encapsulation

serves three important functions:

1. The application can be accessed outside of a

standalone web browser, via an application

distributed through an official app store. This app

includes its own embedded browser to render its

web views.

2. Using plugins made available by popular wrapper

frameworks, the resulting app can also access

underlying hardware features, such as biometrics

sensors, GPS location data and the device

filesystem.

3. The same site or core can be wrapped and

distributed through the official iOS and Android

storefronts, enabling convenient and low-cost

cross-platform development without having to

write new native code.

Ideal Use Cases For
Hybrid Applications:
Cross-platform applications that do not need

top-notch performance; applications that

need to be built within a tight budget but

distributed through an app store.

www.transcenda.com

11 | www.transcenda.com

Pros

• JavaScript, HTML and CSS were the most

used languages in the 2020 Developer

Survey from Stack Overflow, indicating the

high familiarity and low learning curve of

this stack.

• Hybrid development with web

technologies is the lowest-cost option for

building a cross-platform application that

can be distributed through official mobile

app stores.

• The development timeline is also short,

since a hybrid app can be assembled from

an existing mobile website.

Cons

• Hybrid app performance is noticeably

worse than that of either native or cross-

platform native apps.

• Because they don’t use native UI controls

and instead wrap a site, hybrid apps can

look and feel more like mobile web apps

than “real” mobile apps.

As the mobile app economy grew throughout the

2010s, many developers abandoned native-only

development to focus on hybrid-only or a blend of

native and hybrid.

97%

Hybrid development

using frameworks like

Ionic, Apache Cordova

and Capacitor peaked

around 2017, when 97%

of respondents to an

Ionic survey reported

plans to pursue it over

the next few years.

Since then, though, the growing uptake of React Native

and Flutter has cut into the popularity of these solutions.

Both React Native and Flutter provide the same cross-

platform benefit of hybrid applications, while also

delivering superior performance.

That said, hybrid development using HTML, CSS and

JavaScript remains a worthwhile option for some use

cases. Wrapping a site is a straightforward, low-cost

endeavor that maximizes the value of something already

built. The learning curve is slight compared to both

native and cross-platform native development, plus there

is an extensive system of development and debugging

tools, as well as applicable open source technologies.

www.transcenda.com

12 | www.transcenda.com

Option No. 4:
Responsive Mobile
Web Applications

A responsive mobile web application is

a website that optimizes its layout and

design for each device accessing it, in keeping

with principles of responsive web design.

Although the same HTML gets sent to each

device, CSS makes the responsive page render

and behave differently depending on screen

and browser window size. Responsive sites allow

for a single URL to be used by all devices, while

also being easier for search engines to crawl and

index, helping with discoverability.

Responsive mobile web apps are

accessed like any other website,

via a web browser that renders

HTML5. As such, they are relatively

simple and economical to develop,

distribute and maintain.

Over time, HTML5 has added APIs enabling

web apps to access deeper features of the

underlying hardware and OS, including

geolocation data, Bluetooth, magnetometers,

battery status, vibration, WebRTC and HDCP.

These APIs are usually easy to call using

JavaScript, meaning it’s possible to build a

richly featured experience with existing web

technologies instead of native code.

However, responsive web apps are at the

mercy of the browser they’re running on,

and not all browsers and mobile operating

systems offer the same support for advanced

HTML5 APIs. Chromium-based browsers and

Mozilla Firefox offer more support for newer

web APIs than Safari or any iOS versions

of major browsers. This disparity means

that the responsive web app experience,

despite being universal in theory, can differ

substantially by platform.

www.transcenda.com

13 | www.transcenda.com

Pros

• The same URL is accessible from any

standards-compliant browser on any OS.

• Web apps are simple to access and use,

as there are no downloads, installations or

upgrades to worry about, and the latest version

is always available.

• Development is fast, straightforward and cost-

effective, as is distribution since official app

stores are not involved.

Cons

• Web API support varies significantly by browser

and OS.

• Web apps are not accessible offline.

• Web UI is relatively slow and not specifically

optimized for each platform.

Ideal Use Cases For
Responsive Mobile:
Web Applications: General web presence,

prototypes and apps that need to be brought

to market as soon as possible.

Ideal Use Cases for
Responsive Mobile
Web Applications:

General web presence, prototypes and

apps that need to be brought to market as

soon as possible..

www.transcenda.com

14 |www.transcenda.com

Option No. 5:
Progressive Web
Applications

PWAs go a step further than responsive web

applications, by integrating capabilities like

service workers and web app manifests to deliver a

more native-like user experience that works offline.

These apps were pioneered by Google on Chrome

and Android, and they have since gotten official

supports on iOS as well as desktop.

Some of the key differences between PWAs and

responsive web apps include the ability of PWAs to

do some or all of the following, depending on their

design and platform:

• Run offline.

• Be installed on the home screen via a shortcut.

• Launch quickly, thanks to local caching.

• Run in their own windows without normal

browser UI.

• Utilize keyboard shortcuts.

• Accept content from other apps or be set as a

default app.

• Send push notifications.

Ideal Use Cases For
Progressive Web
Applications:

General web presence, prototypes,

upgrades from responsive mobile web

apps and somewhat complicated apps

that cannot go through official app stores.

www.transcenda.com

15 | www.transcenda.com

Pros

• PWAs are fast and inexpensive to build and

maintain, just like responsive mobile web apps.

• At the same time, they offer a more immersive

experience that better harnesses the power of the

underlying hardware and OS.

• Despite looking and feeling like apps, they don’t

have to go through official app stores for approval

or updates. Some mobile gaming platforms have

already pivoted to PWAs for this reason.

Cons

• Support is not uniform across platforms, with

Android offering a better PWA experience than

iOS.

• PWAs are still slower than native and cross-

platform native apps.

Overall, PWAs sit somewhere between responsive

web apps and hybrid apps. They are a logical

upgrade route for organizations that already have

a responsive website and want to deliver a more

app-like experience to users, especially on Android

or desktop.

www.transcenda.com

16 | www.transcenda.com

Conclusion

T here is no universally “correct” option among

the five above. The right choice(s) will always

depend on your particular business objectives, the

intended use cases and performance characteristics

of your application(s), your desired go-to-market

strategy and timeline, the skills of your teams and

their levels of experience in building and maintaining

mobile applications. For example, it often makes

sense to maintain both a responsive web app or PWA

and a cross-platform native app to serve the widest

possible range of users.

All of these major technology stacks will remain

viable for the foreseeable future, although there may

be some decline in the popularity of native apps vis-a-

vis cross-platform native apps, and of responsive web

applications vis-a-vis PWAs.

www.transcenda.com

17 | www.transcenda.com

The following table offers a high-level overview of how the main options
stack up across key criteria including performance and overall cost:

The Transcenda team will work closely with your internal teams to determine the best way forward,

based on your current goals and infrastructure for mobile development. Connect with us directly or

view our case studies to learn more.

Relative
Performance Highest

Medium

Medium to
Low

Medium to
Low

Medium to
Low

Lowest

Lowest

Low Low Low

Swift (iOS),
Kotlin
(Android)

Official app
stores

Official app
stores

Official app
stores

Web Web

JavaScript
(React Native),
Dart (Flutter)

HTML,
CSS and
JavaScript

HTML,
CSS and
JavaScript

HTML,
CSS and
JavaScript

High

High High

High

Slow Fast FastFastestMedium to
Slow

Highest

No
Yes, but more
limited on iOS

Yes, but more
limited on iOSYesYes

Yes Yes

Depends

Yes

Yes Yes Yes

YesNo

No

Native Apps

Main
Programming
Languages

Cross-Platform
Native Apps

Responsive
Web Apps PWAsHybrid Apps

Hardware & OS
Integration

Distribution
Channel

Development &
Maintenance Costs

Development
Speed

Run Offline?

Live updates
& CodePush?

Cross-Platform?

https://transcenda.com/contact-us/
https://transcenda.com/case-studies/

www.transcenda.com

www.transcenda.com

https://www.facebook.com/transcendaconsulting/
https://www.linkedin.com/company/transcendaconsulting/
https://transcenda.com/contact-us/

